Reinforcement Learning, second edition

强化学习:导言

原   价:
928.00
售   价:
696.00
优惠
平台大促 低至8折优惠
发货周期:预计1-3天发货!
作      者
出  版 社
出版时间
2018年11月13日
装      帧
精装
ISBN
9780262039246
复制
页      码
552
语      种
英文
版      次
0002
综合评分
暂无评分
我 要 买
- +
库存 1 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
强化学习是人工智能中比较活跃的研究领域之一,是一种学习的计算方法,智能体在与复杂、不确定的环境交互时试图尽可能扩大所获得的奖励总量。本书作者提供了该领域关键思想和算法的清晰简单的阐述。II版进行了大量扩充和更新,呈现了新主题并更新了其他主题的内容。I部分涵盖在不超出可找到准确解的表格情况的尽可能多的强化学习内容,包含一些新版新增算法;II部分将这些思想扩展到函数逼近,有新的章节主题并扩展了离策略学习和策略梯度方法的处理;第三部分有关于强化学习与心理学和神经科学关系的新章节,以及包含 AlphaGo 等案例研究的更新章节,末章讨论强化学习未来的社会影响。

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field’s key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning’s relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson’s wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.


作者简介:

Richard S. Sutton 是阿尔伯塔大学计算科学教授和 AITF 强化学习和人工智能主席,同时也是 DeepMind 的杰出研究科学家。Andrew G. Barto 是马萨诸塞大学阿默斯特分校计算机与信息科学学院的名誉教授。


本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个